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Abstract. In this work we investigate the differences arising in the one-body operator and the 
correlation parameter when the Lipkin-MeshkovXIick model is deformed. We calculate these 
functions exactly and by means of the time-dependent Hartr-Fock approximtian (TDHF). We 
observe that the exact and the TDHF resde are much closer to each other in Ihe deformed case. 

1. Introduction 

Quantum deformed algebras have lately been exploited by several authors in different 
physical contexts [ 11. The final aim of most of these works consists in finding a physical 
meaning to the deformation procedure and, in this way, to show the range of validity and 
applicability of models which can be described by these q-algebras [Z]. Recently, it has 
also been shown that when q-deformed coherent states for the su&) (the quantum algebra 
counterpart of su(Z) )  are introduced in the timedependent variational principle (TDVP) it 
yields a generalized Hamiltonian dynamics [3] in complete analogy with the non-deformed 
case. In a recent work we have analysed the dynamics of the q-deformed Lipkin-Meshkov- 
Glick (LMG) model [4] in the timedependent HartreeFock approximation (TDHF) [5 ] .  

In the present work the q-deformed Lipkin model is used to investigate the differences 
between the exact evolution in time of a many-particle wavefunction and the evolution 
which arises from the TDHF equations of motion. The rationale of this study is the very fact 
that the variational space obtained through the introduction of the deformed coherent states 
in the TDVP is no longer the usual determinant space. 

Several years ago Krieger [6] argued that the relation between the TDHF dynamics and 
the exact one is by no means clear, since unlike the static case the TDVP cannot warrant 
that the TDHF wavefunction remains close to the true wavefunction with the evolution of 
time. According to this idea we may state that if, at any time, the exact wavefunction is 
a Slater determinant, then the TDHF maximizes the overlap of the Slater determinant with 
the exact wavefunction in a specific interval of time. In the q-deformed context Krieger’s 
arguments raise some questions since, as stated before, the variational space is no longer 
the Slater determinant space. The qdeformation brings correlations to the TDHF dynamics 
and one may wonder whether the enlargement of the variational space and the modifications 
of the dynamics could create conditions for a possible convergence between the exact and 
the variational solutions. 
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We compare the exact evolution and the TDHF results for a typical value of the q- 
parameter departing from the initial conditions defined at a fixed energy per particle which 
corresponds to a particular deformed coherent state. 

In order to understand the effects of the correlations we investigate the time evolution 
of the one-body density p and of the correlation parameter A defined by A = s. 
(which is equal to zero for the usual TDHF), when q-deformation is introduced. 

For the sake of completeness, we have drawn the trajectories followed by the system, 
which can be seen in a phase diagram. 

2. Exact solutions for the LMG model 

The LMG model [4] has often been used because it has many important physical features 
present in realistic models and at the same time is a relatively simple, non-trivial and 
exactly solvable model. This model describes a two N-fold degenerate level system with 
energies 46 and -46 ,  respectively. The states in the upper level are denoted by the labels 
i = 1.. . . , N, the states in the lower level by 4. 

The many-body LMG Hamiltonian is 

where ai (&) creates a fermionic particle in the upper (lower) level. ai (a-i) annihilates a 
particle in the upper (lower) level and I/ is the strength of the interaction. The Hamiltonian 
in terms of the pseudo-spin operators is given by 

H = t J , - $ V ( J : + J ! )  (2) 

Jz=lC( a.a. I I - a-p-i ' ) J+ = z u / u - j  J- = (.I+)'. (3) 

with 
N N 

/ = I  i = I  

The above operators obey the pseudo-spin algebra of su(2). The operators J i  are particle 
hole and hola-particle excitation operators while Jz is related to the number of excited 
particlehole pairs (half the difference between occupied states in the upper and lower 
levels). 

The q-deformed version of the LMG model is obtained through a deformation of the 
pseudo-spin algebra, as has already been extensively discussed in the literature [2]. All 
relevant formulae are given in the appendix. 

The exact solution of the q-deformed version of this model can be obtained by 
diagonalizing the Hamiltonian given in (2), in a base Ijm), where j = Nj2 and N is 
the number of particles involved in the system. Then we obtain the expansion coefficients 
(m[$i) of the eigenstates I*!) in the quasi-spin basis Im), i.e. 

I*,) = CIm)(mI*ili) HI*;) = Wqi) 
m 

where E! are the eigenvalues. 
The exact time evolution of a general wavefunction Iw) is easily found to be [6] 

(4) 
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where 

and 
{mlfpo) = b, ei(j+”d . (8) 

Since we are mainly concerned with the comparison of the exact time evolution with 
the evolution generated by the TDHF equations, we chose the initial 1%) as a deformed 
coherent state throughout this paper. The comparison will be carried out by investigating 
the time evolution of one-body observables, specifically the one-body density, which may 
be expressed in matrix form as [6]  

. . . . . . . . .  

. . . . . . . . .  
with 

p p  = ( P P P  P P - P  ) 
P - P P  P-P-P  

where p p p ,  p p - p .  &pp and p-p -p  are the particleparticle, particle-hole, hole-particle and 
hole-hole densities, respectively. The elements of the one-body density at any time can be 
exactly calculated yielding 

where 

i 

di = Cbmei(m4-E,l) (him). (15) 
m 

Since our main interest is the analysis of the extent of correlations we give here the 
expression of the one-body density fluctuation A. 

The parameter A is a measure of how much a particular many-body state differs from a 
Slater determinant and, in the non-deformed case, its time evolution can give us information 
about how the exact dynamics drives the states out of the Slater determinant space [6]. For 
that reason this parameter is extremely useful in the study of the correlations introduced by 
the q-deformation either for the exact or for the TDHF dynamics. When q -+ 1, all formulae 
which appear in [6] are recovered from the ones above. 
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We then utilize the above equations to perform the exact calculation where we have used 
the eigenvectors and eigenvalues obtained from the deformed Hamiltonian in a deformed 
basis. Our results are discussed in the last section of this work. 

3. TDHF solutions 

In order to apply the deformed TDVP formalism developed so far to the Lipkin model, we 
use the definition of the q-analogues of the ss(2) coherent states as given in the appendix. 

The deformed Lipkin density Hamiltonian in this basis can be written as 

where x V [ N I / c .  
The Lagrangian density becomes 

Introducing the La-agian in the action functional 

S = L(z,Z)dt (1% 

and performing the variation SS = 0 in the space spanned by the deformed coherent states, 
we obtain the following equations of motion: 

s 

and 

where 

To recover the same parametrization of the deformed coherent states utilized in the exact 
time evolution of last section, we parametrize z as z = tan ( f )  ei$ where 6 E [O. n] and 
+ c [0, h ] .  With this parametrization, (17) becomes 

(23) 
N 6 X 
2 2 4 

w e , @ ) = - -  +sinZ-EN(6)- -sin2~c0s2@cN(6) 

with 
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Substituting the q-deformed LMG Hamiltonian in (20) and (21) and performing the 
required manipulations, we obtain 

' X  e .  
6 = - cos4 -sin e sin @cN(e) 

2 
and 

As mentioned in the last section, we also have to calculate the TDHF time evolution of the 
one-body density matrix elements defined in (9) and (IO). The matrix elements can be 
written in terms of the parameters, 

and its time evolution is simply given by the equations of motion above. The parametrization 
in terms of 0 and 6 is convenient since it is the same as the traditional representations of 
TDHF equation in the non-deformed case. Since the equations of motion (equations (26) 
and (27)) are generalized Hamiltonian equations, the TDHF time evolution can be seen as 
trajectories in a phase space 8 and 4. Other representations can also be obtained, and 
an interesting one, which has been introduced by the authors of [6],  directly relates the 
phase-space variables to the one-body density elements. 

2 2 
P P - P  - P-PP 

2iPppP-p-, 
/9 = 1 - 2ppp y = 

In the non-deformed case this parametrization corresponds to a canonical transformation 
of the 8 ,  q5 pair. We will show some trajectories in the (@, y )  plane in the next section. 

The correlation parameter A is also obtained for the TDHF approximation where (16) 
and the above operators for ppp  and p p - p  are used. Our results are considered in the next 
section. 

4. Results and conclusions 

In sections 2 and 3 we have calculated the one-body density operator p and the correlation 
parameter A for the exact case and the TDHF approximation. We have plotted these functions 
versus time in figures 1 and 2. 

We have studied both possibilities for x ,  i.e. we have chosen one value for x < 1 and 
another one for x > 1, x = 1 being the critical point where the non-deformed Lipkin model 
shows a phase transition. 

For x = 0.7, we have fixed as our initial condition E / N  = -0.304 MeV and for 
x = 2.5, we have fixed E / N  = -0.271 MeV. 
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Figure 1. The evolution in time of p, is shown for q = 1 in the upper figures and for q = I .OS 
in the lower figures. The figures on the left have been calculated with x = 0.7 and on the right 
with x = 2.5. The full cnwe stand for the exam calculntion and the curves with C ~ D S S ~ S  for the 
TOW calculation. 

In figure 1 we show the evolution in time of ppp for q = 1 in the upper figures and for 
q = 1.08 in the lower figures. The figures on the left have been calculated with x = 0.7 
and on the right with x = 2.5. Comparing the exact and the TDHF evolution in time of 
p p p  for q = 1, which is the case investigated in [6], we obtain reasonable results, which 
improve considerably when we look at the results obtained for q = 1.08. This is true either 
for x = 0.7 or for x = 2.5. 

In figure 2 we have plotted A versus time for the exact case and the TDHF approximation 
for q = 1 in the upper figures and for q = 1.08 in the lower figures. The figures on the left 
have once again been calculated with x = 0.7 and on the right with x = 2.5. 

Notice that for q = 1 the TDHF result is always equal to zero. For q # 1 we can see that 
even for the initial state we have correlations clearly indicating that the coherent deformed 
state is not a Slater determinant. It is interesting to note that in the TDHF approximation the 
A oscillates close to the initial value, while in the exact case we can have a large increase 
in fluctuations. When the q-parameter increases the amplitude of the oscillating fluctuations 
decreases for the two cases and again we obtain results closer to each other. Those results 
seem to indicate that the increasing deformation affects the dynamics in such a way that we 
have no more correlations than those introduced kinematically by the initial coherent state. 

Finally, we have plotted trajectories in the (p,  y )  phase space, the points defined by 
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Figure 2. A is plohed versus time for the exact case (full curve) and the TDHF approximadon 
(broken curve) for q = 1 in the upper drawings and for q = 1.08 in the lower drawings. The 
figures on the left have been calculated with x = 0.1 and on the right with .y = 2.5. Notice 
that for q = 1 the TDHF result is always qual to zero. 

Figure 3. y is plotted in function of p for x = 0.7. In the left part of the figure (q = I). the 
full c w e  stands for the exact case and the line with crosses for the TDHF result In the right 
part q = 1.08 and the exact and TDHF resub coincide. 
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(30). The one-body densities defining the points of the trajectories are calculated through 
the exact (equations (1 1) and (12)) and TDHF (equations (28) and (29)) time evolution, 

In figure 3 we observe the trajectories followed by the system when x = 0.7. In the 
upper part of the figure (q = I) ,  the full curve stands for the exact case and the curve with 
crosses stands for the TDHF results. In the lower part of figure 3 we have q = 1.08 and 
the exact and TDHF results coincide. We observe that the dispersion present in the q = 1 
case disappears when deformation is introduced. For x = 2.5 we obtain similar patterns 
but the dispersion, although decreasing, remains in the deformed case. The trajectories are 
very instructive since as long as the variables @. y )  depend on all the matrix elements of 
p ,  the agreement obtained between the exact and TDHF solutions strongly suggests that, for 
some energy per particle, the q-deformation maximizes the overlap between the variational 
solution and the exact one. 

S S Avancini et a1 
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Appendix 

Here, we introduce some important quantities related to the su,(2) algebra, whose generators 
obey the following commutation relations: 

[ J + ,  J-I = [ Z J Z l  [ J z ,  Jil = *Ji (A.1) 

where 

and q is the deformation parameter such that when q + 1, [XI = x .  The above operators, 
when applied to a basis I jm) of the carrier space V i  of the representation Tj of su,(2), 
yield 

Jzljm) = mljm) 

J i I im)  = J [ j  r m ] [ i i m +  ~ l l j m i  I )  

The q-analogues of the su(2) coherent states [7] are given by 
with m = - j ,  - j  + 1 ,.._, j and j =O,I/?., 1 .... 

lz) = $+lj - j )  (A.3) 

where the q-exponential is given by 

with Em]! = [m][m - 11 ... [I] .  Notice that lz) is a state belonging to the su,(2) space V J  
and its normalization is 
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where j is related to the number of particles N considered in the system and the q-binomial 
is given by 

where 
[ml! [T] = [m - k ] ! [ k ] !  ' 

We also need to define the su,(2) operators in the Bargmann space [9]: 

(ZIJ+IS) = ( - q - 2 i z * ~ ,  + [ ~ ~ ] Z L , - , ) I Z I + )  

(z1J-W = D*(zl+) 
where I@) is an arbitrary state in the space V J  and 

is the q-derivative and 

Lqpf (z) = f ( q - ' z )  
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